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Online Appendix 

Appendix A. Additional Tables 
 

Table A1. Heterogeneity analysis. 

 High-tech Firm scale Intellectual property protection 
 (1) (2) (3) 
BCS×High-tech 0.322***   
 (0.042)   
BCS×Big  0.141***  
  (0.035)  
BCS×IPR   0.116*** 
   (0.036) 
Control variables Yes Yes Yes 
Year FE Yes Yes Yes 
Firm FE Yes Yes Yes 
Observations 22915 22915 22915 
R2 0.425 0.423 0.423 

Notes: *** denotes significance at the 1% level, ** denotes significance at the 5% level, and * 
denotes significance at the 10% level. All control variables, year fixed effects, and firm fixed 
effects are included in each regression. Robust standard errors clustered at the city level are 
shown in parentheses. All lower-order terms are included in the regression. 

Appendix B. The institutional background of the 

BCS 

China's internet infrastructure was established in 1994 and began offering 

internet services to the public in 1995. However, the average speed of the 

internet in China was only 10 Kbps at the beginning of the construction period 

and the usage costs were expensive, which limited the development of the 

internet in China (Yu et al., 2023). According to the 32nd Statistical Report on 

Internet Development in China and the State of the Internet published by 

Akamai in 2013, China's internet penetration rate was less than 50% by 2013, 
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with broadband internet penetration at just 14.1%. By 2012, the national 

average internet speed was a mere 1.8 Mbps. The proportion of broadband with 

speeds above 4 Mbps in China was 5.4% in 2012, compared to 86% in South 

Korea, 76% in Japan, and the global average of 42%. Therefore, if we follow the 

FCC's definition of broadband internet (connection speed of more than 4 Mbps), 

China's broadband internet penetration rate in 2012 was only 5.4%, significantly 

lower than the global average. Furthermore, China's internet development 

exhibited substantial disparities between regions and between urban and rural 

areas. 

To improve the quality of China's internet and promote the balanced 

development of internet infrastructure across regions, the Chinese government 

announced the implementation of the BCS in August 2013, which is divided 

into three phases. The first phase is the comprehensive speed-up phase, which 

focuses on replacing the existing network with a fiber-optic infrastructure to 

improve the user experience; the second phase is the diffusion and penetration 

phase, which aims to expand broadband internet coverage and deepen 

application penetration; and the third phase is the optimization and upgrading 

phase, which seeks to continuously improve broadband service quality through 

technological advancements. Following the implementation of BCS, China's 

internet connection quality improved rapidly. The average internet connection 

speed in China increased to 3.4 Mbps in 2014 after the implementation of BCS, 

and the proportion of broadband connections exceeding 4 Mbps rose to 27%. 
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Figure B1 illustrates the changes in the number of broadband ports and the 

number of broadband users in China before and after the implementation of 

BCS, showing significant growth in both metrics. This demonstrates the crucial 

role of BCS in expanding broadband coverage. 

 
Figure B1. Development of broadband in China. 

Notes: Data sourced from the China Internet Network Information Center and CEIC database, 
as compiled by the authors. 

As the implementing departments of the BCS, the Ministry of Industry and 

Information Technology (MIIT) and the National Development and Reform 

Commission (NDRC) of China announced the establishment of pilot cities for 

the BCS in 2014 to accelerate the upgrading of broadband internet services in 

cities. Three batches of cities were recognized as BCS pilot cities in 2014, 2015, 

and 2016, respectively. Figure B2 illustrates the spatial distribution of BCS pilot 

cities over the period from 2014 to 2016. The spatiotemporal distribution of 

BCS pilot cities indicates that there was no significant clustering among the 
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various batches of cities designated in different years. 

 
Figure B2. City-by-city rollout of BCS over time. 

Notes: This map illustrates the timeline and geographic distribution of BCS pilot cities. The 
data on pilot cities is sourced from the MIIT of China. 

 

Appendix C. Robustness test 

C.1. Event study 

To test the parallel trend assumption, we estimate the following regression: 

𝑌𝑖𝑐𝑡 = 𝛼 + ∑ 𝛽𝜏𝐵𝐶𝑆𝑐𝜏

5

𝜏=−5,𝜏≠−1
+ 𝑋𝑖𝑐𝑡

′ 𝛾 + 𝑍𝑐𝑡
′ 𝜃 + 𝜇𝑡 + 𝛿𝑖 + 𝜀𝑖𝑐𝑡, (1) 

where 𝜏  is the relative time to BCS. 𝐵𝐶𝑆𝑐𝜏  takes the value of 1 if city 𝑐 is a 

pilot city in period 𝜏  and 0 otherwise. 

Figure C1 illustrates the dynamic effect of BCS. Coefficients for periods -5 

to -2 are insignificant, validating the parallel trend assumption. After the 

implementation of BCS, the number of firm patent transactions significantly 
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increases. 

 
Figure C1. Event study. 

C.2. Placebo test 

We conduct a placebo test by randomly assigning pilot cities and 

implementation years, employing the identification method from column 3 of 

Table 2. Figure C2 shows placebo coefficients clustered around zero, while our 

baseline estimates (solid black line) significantly deviate, confirming the 

robustness of the findings. 
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Figure C2. Distribution of the estimated coefficients of the placebo test. 

C.3. Excluding interference of other policies 

To account for concurrent policies (e.g., Smart City pilot, Big Data 

Comprehensive Zones, and Made in China 2025), we include corresponding 

dummy variables in our regression.1 Table C1 shows that the coefficients of 

BCS remain significantly positive, confirming our results are robust to these 

concurrent policies. 

Table C1. Results of excluding other policy interferences in the same 
period. 

 lnPatentTransaction 
 (1) (2) (3) (4) 
BCS 0.073** 0.076** 0.075** 0.073** 
 (0.037) (0.038) (0.038) (0.036) 
Smart city Yes No No Yes 
Big data zone No Yes No Yes 
Made in China 2025 No No Yes Yes 

 
1 Since the “Made in China 2025” initiative was launched nationwide in 2015, we follow Li and Branstetter (2024)Li, 
G., & Branstetter, L. G. (2024). Does “Made in China 2025” work for China? Evidence from Chinese listed firms. 
Research Policy, 53(6), 105009.  and define firms that mention “Made in China 2025” (in Chinese) in their annual 
reports as the time when the firm is affected by the policy. 
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Control variables Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes 
Firm FE Yes Yes Yes Yes 
Observations 22915 22915 22915 22915 
R2 0.422 0.422 0.422 0.423 

Notes: *** denotes significance at the 1% level, ** denotes significance at the 5% level, and * 
denotes significance at the 10% level. All control variables, year fixed effects, and firm fixed 
effects are included in each regression. Robust standard errors clustered at the city level are 
shown in parentheses. 

C.4. Heterogeneous treatment effects 

Recent econometric literature suggests that staggered DID methods based 

on TWFE can be biased when there are heterogeneous treatment effects (Baker 

et al., 2022; Goodman-Bacon, 2021; Sun & Abraham, 2021). Therefore, we re-

estimate the effect of the BCS on firm patent transactions using the estimators 

proposed by Sun and Abraham (2021) and Gardner (2022) to test the robustness 

of the estimation result in allowing for heterogeneous treatment effects. The 

estimation results in Table C2 and Figure C3 show that the estimates using the 

alternative estimator are consistent with the baseline results, implying that our 

results remain robust after allowing for heterogeneous treatment effects. 

Table C2. Results of using alternative estimators 

 lnPatentTransaction 
 (1) (2) 
BCS 0.110** 0.088*** 
 (0.051) (0.030) 
Control variables Yes Yes 
Year FE Yes Yes 
Firm FE Yes Yes 
Estimator Sun and Abraham (2021) Gardner (2022) 
Observations 18329 20617 
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Figure C3. Event study (robust estimator) 

C.5. Negative binomial regression 

Chen and Roth (2024) demonstrates that applying the log‑plus‑one 

transformation in datasets with a high prevalence of zeros can bias parameter 

estimates. To address this concern, we re‑estimate the effect of BCS on firm 

patent transactions using the raw count of transactions as the dependent 

variable with negative binomial regression. As shown in Table C3, the estimated 

coefficients are slightly larger than baseline results, implying that the 

log‑plus‑one transformation may underestimate the impact of BCS. Accordingly, 

our baseline estimates should be interpreted as a conservative lower bound. 

Table C3. Results of negative binomial regression 

 PatentTransaction 
 (1) (2) 
BCS 0.095** 0.101** 
 (0.042) (0.042) 
Control variables No Yes 
Year FE Yes Yes 
Firm FE Yes Yes 
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Observations 18329 18329 
Log likelihood -21870.13 -21495.27 

 

C.6. PSM-DID 

To address the concern that firms in early-adopting cities may differ 

systematically from those in late- or non-adopting cities, we implement a 

propensity score matching difference-in-differences (PSM-DID) approach as a 

robustness check. We estimate propensity scores using covariates from the 

baseline regression, and then perform 1:1 nearest-neighbor matching without 

replacement, ensuring comparability between treated and control group firms. 

As shown in Figure C4, the distribution of propensity scores between the 

treatment and control groups becomes closely aligned after matching, suggesting 

that the matching procedure is effective in balancing observed characteristics. 

Figure C5 further confirms the improvement in covariate balance, as the 

standardized bias across all covariates is substantially reduced after matching. 

We then re-estimate the difference-in-differences specification using the matched 

sample. The results, reported in Table C4, remain robust and consistent with 

our baseline estimates. 

Table C4. PSM-DID 

 lnPatentTransaction 
 (1) (2) 
BCS 0.143** 0.141** 
 (0.066) (0.061) 
Control variables No Yes 
Year FE Yes Yes 
Firm FE Yes Yes 



 10 

Observations 9172 9172 
R2 0.480 0.492 

 

 
Figure C4. Propensity score distributions before and after matching 

 
Figure C5. Standardized Bias of Covariates Before and After Matching 

 

C.7. Accounting for the Spatial Spillovers effect 

To account for the potential spatial spillover effects of broadband 
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infrastructure, we extend the baseline specification by incorporating indirect 

exposure through geographic proximity. Following Butts (2021), we identify 

untreated cities that share borders with BCS pilot cities and define a dummy 

variable, Spillover, which equals one for firms in those neighboring cities starting 

from the year when any adjacent city implemented the BCS, and zero otherwise. 

In this setting, the BCS indicator captures the direct effect of broadband 

expansion on firms in treated cities, while Spillover captures indirect effects on 

geographically proximate but untreated firms. 

This extension addresses possible violations of the stable unit treatment 

value assumption (SUTVA). By explicitly modeling spillover exposure, we 

mitigate bias arising from treatment spillovers across city boundaries, ensuring 

more credible identification of the policy’s direct impact (Butts, 2021). 

Results in Table C5 show that both BCS and Spillover coefficients are 

positive and statistically significant, with the former being notably larger. 

These findings indicate that while broadband infrastructure has the strongest 

impact on firms in directly treated cities, it also generates substantial positive 

spillovers for firms in neighboring areas. After accounting for the spatial 

spillovers of the BCS, the estimated coefficient increases relative to the 

baseline regression, suggesting that failing to consider these spillovers likely 

results in an underestimation of the effect of BCS on firm patent transactions. 

Table C5. Results accounting for spatial spillovers 

 lnPatentTransaction 
 (1) (2) 
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BCS 0.159*** 0.135*** 
 (0.046) (0.039) 

Spillover 0.103** 0.095** 
 (0.049) (0.043) 

Control variables No Yes 
Year FE Yes Yes 
Firm FE Yes Yes 

Observations 22915 22915 
R2 0.397 0.422 
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